RESTRICTED RANDOM WALK WITH ONE BARRIER

By
Sushma Taneja and Kanwar Sen

INTRODUCTION

Let X_{i} be a random variable associated with the $i^{\text {th }}$ step of the particle s.t.
$X_{i}=\left\{\begin{array}{l}+1, \text { if the particle moves one unit step upward } \\ -1, \text { if the particle moves one unit step downward }\end{array}\right.$ with respective probabilities p and $\mathrm{q}(=1-p)$.
Writing
$S_{i}=X_{1}+X_{2}+\ldots+X_{i} ; i=1,2, \ldots, n ; S_{o}=0$ then
$S_{i}-S_{i-1}=X_{i}= \pm 1$
When the points (i, S_{i}) are plotted on $x y$-plane and joined successively by straight line segments we get a path whose vertices have abscissa $0,1, \ldots, \mathrm{n}$ and ordinate $\mathrm{S}_{o}, S_{1}, \ldots, S_{n}$ respectively. Such a path may be taken as representing the simple random walk.

Authors (1976) have investigaged certain results for this random walk starting at the origin and arriving at it at the $2 \mathrm{n}^{\text {th }}$ step when it is restricted by a condition ' E ' described below:
"If $S_{r}=0$ for $r=2 \alpha_{1}, 2 \alpha_{2}, \ldots, 2 \alpha_{i}=2 n, i=1,2, \ldots, n$ then the $j^{\text {th }}$ segment included between the $(j-1)^{\text {th }}$ and $j^{\text {th }}$ zeroes satisfy the following condition:

for $j=1,2, \ldots, i ; i=1,2, \ldots, n$
i.e. a symmetric random walk of 2 n steps from $(0,0)$ to $(2 n, 0)$ has at most one turning point between retums to the x-asis.

In this paper we consider the problem of simple random walk of 2 n steps starting from (0,0) and terminating at ($2 \mathrm{n}, 0$) satisfying condition ' E ' and is such that the path does not touch or cross the line $y=k$.

Notation:

For a path[$\left.S_{o}=0, S_{1}, S_{2}, \ldots, S_{2 n}=0\right]$ satisfying the condition ' E ' we define the following notations:
A-point : a point $\left(j, S_{j}\right)$ with $S_{j}=0$ i.e. a return to the x-asis.
$A^{+}\left(A^{-}\right): A n A$-point s.t., $S_{j-1}=+1\left(S_{j-1}=-1\right)$. It is a positive (negative) return point.
V (wave) : A segment of a path included between two consecutive A-points. The segment from origin to the first returm point is also regarded as a wave.
$V^{+}\left(V^{-}\right):$a wave V s.t. $S_{j}>0\left(S_{j}<0\right)$ at the intervening positions.
$V^{+}\left(k^{-}\right):$a V^{+}not reaching the line $y=k(k>0)$.
B-point : a point $\left(j, S_{j}\right)$ of the path with $S_{j}=0$ and S_{j-1}. $S_{j+1}=-1$. It is called a crossing or intersection with x-axis.
C (section) : a segment of a path included between two consecutive B-points. The segments from origin to the first
B-point and that from the last B-point to the end point $(2 n, 0)$ are also regarded as sections.
$C^{+}\left(C^{-}\right) \quad: \quad$ a section C s.t. $S_{j} \geqslant 0\left(S_{j} \leqslant 0\right)$ in between.
$C_{n} \quad: \quad$ a path $\left[S_{o}, S_{1}, \ldots, S_{n}\right]$ with $S_{o}=S_{n}=0$ and n even.
$C_{n}\left(k^{-}\right) \quad: \quad$ a C_{n} not reaching the line $y=k$.
$C_{n}\left(k^{-}\right) \quad: \quad$ a $C_{n}\left(\mathrm{k}^{-}\right)$with $S_{1}=+1$.
$C^{+}\left(k^{-}\right): \quad$ a C^{+}not reaching the line $y=k$
$C_{n}\left(k_{1}, k_{2}\right)$: a C_{n}-path which does not reach the line $y=k_{1}$ and $y=-k_{2}\left(k_{1}, k_{2}>0\right)$.
$(\ldots)_{E} \quad: \quad$ Number of possible paths of the type ... and satisfying condition E .

The following generating functions which are easily determined will be used in the sequel:

$$
\begin{array}{ll}
G_{s}\left(V^{+}\left(k^{-}\right)\right) & ::_{i=1}^{k} \sum^{1}\left(p q s^{2}\right)^{i}=-\frac{p q s^{2}-\left(p q s^{2}\right)^{k}}{1-p q s^{2}} \\
G_{s}\left(V^{-}\right) \quad & : \sum_{i=1}^{\infty}\left(p q s^{2}\right)^{i}=\frac{p q s^{2}}{1-p q s^{2}} \tag{2}
\end{array}
$$

Theorem:

$$
\begin{align*}
& \left(C_{2 n, r_{1}}^{2 b(2 h)}(+)\left(k^{-}\right)\right)_{E}=\binom{r_{1}-1}{b}\binom{r-r_{1}-1}{b-1}\binom{n-h-1}{r-r_{1}-1} f\left(h, k, r_{1}\right) \tag{3}\\
& \left(C_{2 n, r, r}^{2 b(2 h)}(-)\left(k^{-}\right)\right)_{E}=\binom{r_{1}-1}{b-1}\binom{r-r_{1}-1}{b}\binom{n-h-1}{r-r_{1}-1} f\left(h, k, r_{1}\right) \tag{4}\\
& \left(C_{2 n, r, r_{1}}^{2 b-1(2 h)}\left(k^{-}\right)\right)_{E}=2\binom{r_{1}-1}{b-1}\binom{r-r_{1}-1}{b-1}\binom{n-h-1}{r-r_{1}-1} f\left(h, k, r_{1}\right) \tag{5}
\end{align*}
$$

where
$C_{n, r, r_{1}}^{b(h)}(+)\left(k^{-}\right):$a $C_{n}\left(k^{-}\right)$path with $S_{1}=+1$ and having $b-B$ points, $r A$-points of which r_{1} are A^{+}points and h steps above x-axis.

$$
\begin{equation*}
f\left(h, k, r_{1}\right)=\sum_{i=0}^{\min \left(r_{1},\left[\frac{h-r_{1}}{k-1} \mathrm{l}\right)\right.}(-1)^{i}\binom{r_{1}}{i}\binom{h-1-(k-1) i}{r_{1}-1} \tag{6}
\end{equation*}
$$

Proof.
Let $C_{2 n, r, r_{1}}^{2 b(2 h)}(+)\left(k^{-}\right)$be a path as envisaged in (3). Since $S_{1}>0$ and $S_{2 n-1}>0$, this path would consist of $r_{1} V^{+}\left(k^{-}\right)$constituting $(b+1)$ $C^{+}\left(k^{-}\right)$and $\left(r-r_{1}\right) V^{-}$forming $b C^{-}(b+1) C^{+}\left(K^{-}\right)$can be constructed out of $r_{1} V^{+}\left(k^{-}\right)$in $\left(r_{1}-1\right)$ ways and similarly $b C^{-}$can be formed out of $\left(\begin{array}{r}\left.r-r_{1}\right) V^{-} \text {in }(b-1)\end{array}\binom{r-r_{1}-1}{b-1}\right.$ ways. This is akin to distributing δ similar balls into α distinct cells which is possible in $(\alpha-1)$ ways. Thus, on using (1) and (2) we get the bivariate g.f.

$$
\begin{align*}
& G_{s_{1}, s_{2}}\left(C_{2 n, r, r_{1}}^{2 b(2 h)}(+)\left(k^{-}\right)\right)_{E}= \Sigma \Sigma\left(C_{2 n, r, r_{1}}^{2 b(2 h)}(+)\left(k^{-}\right)\right)_{E} s_{1}^{2 h} s_{2}^{2 n}-2 h(p q)^{n} \tag{7}\\
&=\binom{r_{1}-1}{b}\binom{r-r_{1}-1}{b-1}\left[\frac{p q s_{1}^{2}-\left(p q s_{1}^{2}\right)^{k}}{1-p q s_{1}^{2}}\right]^{r_{1}} \\
& \times\left[\begin{array}{c}
p q s_{2}^{2} \\
1-p q s_{2}^{2}
\end{array}\right]^{r-r_{1}} \\
&=\binom{r_{1}-1}{b}\binom{r-r_{1}-1}{b-1}\left(p q s_{1}^{2}\right)^{r}\left(p q s_{2}^{2} y^{-r_{1 x}}\right. \\
& \sum_{i=1}^{r_{1}}(-1)^{i}\binom{r_{1}}{i}\left(p q s_{1}^{2}\right)^{i(k-1)} \sum_{j=0}^{\infty}\binom{j+r_{1}-1}{j} \times \\
&\left(p q s_{1}^{2}\right)^{j} \sum_{m=0}^{\infty}\binom{r-r_{1}+m-1}{m}\left(p q s_{2}^{2}\right)^{m}
\end{align*}
$$

whence the coefficient of $(p q)^{n} s_{1}^{2 h} s_{2}^{2 n-2 h}$ leads to (3).
Similarly (4) follows.

Proceeding for $\left(C_{2 n, r, r_{1}}^{2 b-1}(2 h)\left(k^{-}\right)\right)$, it is obvious that the number of paths remains the same whether $S_{1}=+1$ or $S_{1}=-1$ which accounts for factor 2 in (5). Such a path has $b C^{+}\left(k^{-}\right)$and $b C^{-}$ comprising $r_{1} V^{+}\left(k^{-}\right)$and $\left(r-r_{1}\right) V^{-}$, respectively. Thus arguing as for (3), we get (5).

Letting $k \rightarrow \infty$ on (3), (4), (5) we get

$$
\begin{align*}
& \left(C_{2 n, r, r_{1}}^{2 b(2 h)}(+)\right)_{E}=\binom{r_{1}-1}{b}\binom{h-1}{r_{1}-1}\binom{r-r_{1}-1}{b-1}\binom{n-h-1}{r-r_{1}-1}_{(8)} \tag{8}\\
& \left(C_{2 n, r, r_{1}}^{2 b(2 h)}(-)\right)_{E}=\binom{r_{1}-1}{b-1}\binom{h-1}{r_{1}-1}\binom{r-r_{1}-1}{b}\binom{\mathrm{n}-h-1}{r-r_{1}-1}_{(9)} \\
& \left(C_{2 n, r, r_{1}}^{2 b-1(2 h)}\right)_{E}=2\binom{r_{1}-1}{b-1}\binom{h-1}{r_{1}-1}\binom{r-r_{1}-1}{b-1}\binom{n-h-1}{\left(-r_{1}-1\right.}
\end{align*}
$$

where
$C_{n, r, r_{1}}^{b(h)}: \quad$ a C_{n}-path with $b B$-points, $r A$ points of which r_{1} are A^{+} -points and h steps above the x-axis.
(8), (9), (10) verify authors' results (1), (2), (3) See [2].

Deductions:
(i) Let $C_{2 n, ., r_{1}}^{b(h)}(+)\left(k^{-}\right):$A $C_{n}\left(k^{-}\right)$-path with $S_{1}=+1$ and having $b B$-points, $r_{1} A^{+}$-points and h steps above x-axis.

$$
\begin{gather*}
G_{s_{1}, s_{2}}\left(C_{2 n, ., r_{1}}^{2 b(2 h)}(+)\left(k^{-}\right)\right)_{E}=\binom{r_{1}-1}{b}\left[\frac{p q s_{1}^{2}-\left(p q s_{1}^{2}\right)^{k}}{1-p q s_{1}^{2}}\right]^{r_{1}} \\
{\left[\frac{p q s_{2}^{2}}{1-p q s_{2}^{2}}\right]^{b}} \tag{11}
\end{gather*}
$$

$$
=\binom{r_{1}-1}{b}\left(p q s_{1}^{2}\right)^{r_{1}}\left(p q s_{2}^{2}\right)^{b} \quad \sum_{i=0}^{r_{1}}\binom{r_{i}}{i}\left(-p q s_{1}^{2}\right)^{i}
$$

$$
\times \sum_{j=0}^{\infty}\binom{j+r_{1}-1}{j}\left(p q s_{1}^{2}\right)^{i} \sum_{m=0}^{\infty}\binom{b+m-1}{m}\left(p q s_{2}^{2}\right)^{m}
$$

whence the coefficient of $(p q)^{n} s_{1}^{2 h} s_{2}^{2 n-2 h}$ gives

$$
\begin{equation*}
\left(C_{2 n, ., r_{1}}^{2 b(2 h)}(+)\left(k^{-}\right)\right)_{E}=2^{n-h-b}\binom{r_{1}-1}{b}\binom{n-h-1}{b-1} f\left(h k, r_{1}\right) \tag{12}
\end{equation*}
$$

similarly summing (4) over $b+r_{1}+1 \leqslant r \leqslant \infty$ and (5) over $b+r_{1}$ $\leqslant r \leqslant \infty$ we get respectively

$$
\begin{gather*}
\left(C_{2 n, ., r_{1}}^{2 b(2 h)}(-)\left(k^{-}\right)\right)_{E}=2^{n-h-b-1}\binom{r_{1}-1}{b-1}\binom{n-h-1}{b} f\left(h, k, r_{1}\right) \tag{13}\\
\left(C_{2 h, ., r_{1}}^{2 b-1(2 h)}(+)\left(k^{-}\right)\right)_{E}=2^{n-h-b}\binom{r_{1}-1}{b-1}\binom{n-h-1}{b-1} f\left(h, k, r_{1}\right) \tag{14}\\
=\left(C_{2 n, ., r_{1}}^{2 b-1(2 h)}(-)\left(k^{-}\right)\right)_{E}
\end{gather*}
$$

(ii) Putting $s_{1}=s_{2}=s$ in (7) we get,

$$
\begin{align*}
G_{s}\left(C_{2 n, r, r_{1}}^{2 b}(+)\left(k^{-}\right)\right)_{E}= & \binom{r_{1}-1}{b}\binom{r-r_{1}-1}{b-1}\left[1-\left(p q s^{2}\right)^{k-1}\right]^{r_{1}} \\
& \mathrm{x}\left[\frac{p q s^{2}}{1-p q s^{2}}\right]^{r} \tag{15}\\
= & \binom{r_{1}-1}{b}\binom{r-r_{1}-1}{b} \sum_{i=0}^{r_{1}}\binom{r_{1}}{i}\left(p q s^{2}\right)^{(k-1) i} \\
\mathrm{x} & \sum_{j=0}^{\infty}\binom{r_{1}+j-1}{j}\left(p q s^{2}\right)^{r+j}
\end{align*}
$$

where

$$
\begin{aligned}
C_{n, r, r_{1}}^{\infty}(+)\left(k^{-}\right): & \text {a } C_{n}(+)\left(k^{-}\right) \text {-path with } b B \text {-points, } r A \text {-points } \\
& \text { of which } r_{1} \text { are } A^{+} \text {-points. }
\end{aligned}
$$

The coefficient of $\left(p q s^{2}\right)^{n}$ in (15) gives

$$
\begin{align*}
\left(C_{2 n, r, r_{1}}^{2 b}(+)\left(k^{-}\right)\right)_{E} & =\binom{r_{1}-1}{b}\binom{r-r_{1}-1}{b-1} \sum_{i=0}^{\min \left(r_{1}, \frac{n-r}{k-1}\right)}(-1)\binom{r_{1}}{i} \\
& \times\binom{ n-1-(k-1) i}{r-1} \tag{16}\\
& =\binom{r_{1}-1}{b}\binom{r-r_{1}-1}{b-1} \quad f\left(n, k, r, r_{1}\right)
\end{align*}
$$

where

$$
f\left(n, k, r, r_{1}\right)=\sum_{i=0}^{\min \left(r_{1},\left|\frac{n-r}{k-1}\right|\right)}(-1)^{i}\binom{r_{1}}{i} \quad\binom{n-1-(k-1) i}{r-1}
$$

Similarly summing (4) and (5) over h we get

$$
\begin{align*}
& \left(C_{2 n, r, r_{1}}^{2 b}(-)\left(k^{-}\right)\right)_{E}=\binom{r_{1}-1}{b-1}\binom{r-r_{1}-1}{\mathrm{~b}} f\left(n, k, r, r_{1}\right) \tag{17}\\
& \left(C_{2 n, r, r_{1}}^{2 b-1}\left(k^{-}\right)\right)_{E}=2\binom{r_{1}-1}{b-1}\binom{r-r_{1}-1}{b-1} f\left(n, k, r, r_{1}\right) \tag{18}
\end{align*}
$$

For $k \rightarrow \infty$ in (16), (17), (18) we get

$$
\begin{align*}
& \left(C_{2 n, r, r_{1}}^{2 b}(+)\right)_{E}=\binom{r_{1}-1}{b}\binom{r-r_{1}-1}{b-1}\binom{n-1}{r-1} \tag{19}\\
& \left(C_{2 n, r, r_{1}}^{2 b}(-)\right)_{E}=\binom{r_{1}-1}{b-1}\binom{r-r_{1}-1}{b}\binom{n-1}{r-1} \tag{20}\\
& \left(C_{2 n, r, r_{1}}^{2 b-1}\right)_{E}=2\binom{r_{1}-1}{b-1}\binom{r-r_{1}-1}{b-1}\binom{b-1}{r-1} \tag{21}
\end{align*}
$$

where

$$
\begin{array}{ll}
C_{n, r, r_{1}}^{b}: & \text { a } C_{n} \text {-path with } b B \text {-points, } r A \text {-points of which } \\
& r_{1} \text { are } A^{+} \text {-points. }
\end{array}
$$

(iii) $C_{n, r, r_{1}}^{h}\left(k^{-}\right)\left(C_{n, r, r_{1}}^{h}\right):$ a $\quad C_{n}\left(k^{-}\right) \quad\left(C_{n}\right)$-path with r A-points, $r_{1} A+$ points and h steps above the x-axis.

Summing (3) over $1 \leqslant b \leqslant \min \left(r_{1}-1, r-r_{1}\right)$; (4) over $1 \leqslant b \leqslant \min$ $\left(r_{1}, r-r_{1}-1\right)$ and (5) over $1 \leqslant b \leqslant \min \left(r_{1}, r-r_{1}\right)$ respectively we get

$$
\begin{align*}
& \left(C_{2 n, r r_{1}}^{2 h}(+)\left(k^{-}\right)\right)_{E}^{e}=\binom{r-2}{r_{1}-2}\binom{n-h-1}{r-r_{1}-1} f\left(h, k, r_{1}\right) \tag{22}\\
& \left(C_{2 n, r, r_{1}}^{2 h}(-)\left(k^{-}\right)\right)_{E}^{e}=\binom{r-2}{r_{1}}\binom{n-h-1}{r-r_{1}-1} f\left(h, k, r_{1}\right) \tag{23}\\
& \left(C_{2 n, r, r_{1}}^{2 h}(k)\right)_{E}^{o}=2\binom{r-2}{r_{1}-1}\binom{n-h-1}{r-r_{1}-1} f\left(h, k, r_{1}\right) \tag{24}
\end{align*}
$$

where superscript ' e ' (' o ') denotes the even (odd) number of crossings.

Adding (22), (23) and (24) we get

$$
\begin{equation*}
\left(C_{2 n, r, r_{1}}^{2 h}(k)\right)_{E}=\binom{r}{r_{1}}\binom{n-h-1}{r-r_{1}-1} f\left(h, k, r_{1}\right) \tag{25}
\end{equation*}
$$

Letting $k \rightarrow \infty$ in (25) we get

$$
\begin{equation*}
\left(C_{2 n, r, r_{1}}^{2 h}\right)_{E}=\binom{r}{r_{1}}\binom{n-h-1}{r-r_{1}-1}\binom{h-1}{r_{1}-1} \tag{26}
\end{equation*}
$$

(iv) Summing (11) over $b+1 \leqslant r_{1} \leqslant h$; (13) and (14) over $b \leqslant r_{1} \leqslant h$ we get

$$
\begin{aligned}
& \left(C_{2 n}^{2 b(2 h)}(+)(k)\right)_{E}=2^{n-h-b}\binom{n-h-1}{b-1} \sum_{r_{1}=b+1}^{h}\binom{r_{1}-1}{b} f\left(h, k, r_{1}\right)(27) \\
& \left(C_{2 n}^{2 b(2 h)}(-)(k)\right)_{E}=2^{n-h-b-1}\binom{n-h-1}{b} \sum_{r_{1}=b}^{h}\binom{r_{1}-1}{b-1} f\left(h, k, r_{1}\right)(28) \\
& \left(C_{2 n}^{2 b-1(2 h)}(k)\right)_{E}=2^{n-h-b+1}\binom{n-h-1}{b-1}_{r_{1}=b}^{h}\binom{r_{1}-1}{b-1} f\left(h, k, r_{1}\right)(29)
\end{aligned}
$$

where

$$
\begin{aligned}
C_{n}^{b(h)}(k): \text { a } C_{n}(k) \text {-path with } b B \text {-points and } h \text { steps above } \\
\text { the } x \text {-axis. }
\end{aligned}
$$

(v) Summing (16) and (19) over $b+1 \leqslant r_{1} \leqslant r-b$; (17) and (20) over $b \leqslant r_{1} \leqslant r-b-1$; (18) and (21) over $b \leqslant r_{1} \leqslant r-b$ we get respectively

$$
\begin{align*}
& \left(C_{2 n, r}^{2 b}(+)(\mathrm{k})_{E}=\sum_{r_{1}=b+1}^{r-b}\binom{r_{1}-1}{b}\binom{r-r_{1}-1}{b-1} f\left(n, k, r, r_{1}\right)(30)\right. \\
& \left(C_{2 n, r}^{2 b}(+)\right)_{E}=\binom{n-1}{r-1} \quad\binom{r-1}{2 b} \tag{31}
\end{align*}
$$

$$
\begin{equation*}
\left(C_{2 n, r}^{2 b}(-)(k)\right)_{E}=\sum_{r_{1}=b}^{r-b-1}\binom{r_{1}-1}{b-1}\binom{r-r_{1}-1}{b} \quad f\left(n, k, r, r_{1}\right) \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
\left(C_{2 n, r}^{2 b}(-)\right)_{E}=\binom{n-1}{r-1}\binom{r-1}{2 b} \tag{33}
\end{equation*}
$$

$$
\begin{equation*}
\left(C_{2 n, r}^{2 b-1}(k)\right)_{E}=2 \sum_{r_{1}=b}^{r-b}\binom{r_{1}-1}{b-1}\binom{r-r_{1}-1}{b} f\left(n, k, r, r_{1}\right) \tag{34}
\end{equation*}
$$

$$
\begin{equation*}
\left.\left(C_{2 n, r}^{2 b-1}(+)\right)_{E}=\binom{n-1}{r-1}\binom{r-1}{2 b-1}=C_{2 n, r}^{2 b-1}(-)\right)_{E} \tag{35}
\end{equation*}
$$

where

$$
C_{n, r}^{b}(k)\left(C_{n, r}^{b}\right): \quad \begin{aligned}
& \text { a } C_{n}(k)\left(C_{n}\right) \text {-paints. }
\end{aligned}
$$

Clearly from (31), (33) and (35) we get

$$
\begin{equation*}
\left.\left(C_{2 n, r}^{b}(+)\right)_{E}=\binom{n-1}{r-1}\binom{r-1}{r-1}=C_{2 n, r}^{b}(-)\right)_{E} \tag{36}
\end{equation*}
$$

verifying authors' result (15) see [1].

$$
\begin{equation*}
\left.\left(C_{2 n}^{b}(+)\right)_{E}=2^{h-1-b}\binom{n-1}{b}=C_{2 n}^{b}(-)\right)_{E} \tag{37}
\end{equation*}
$$

where

$$
C_{n}^{b}: \quad \text { a } C_{n} \text {-path with } b B \text {-points }
$$

Summing (25) over r, r_{1} and h we get

$$
\begin{equation*}
\left(C_{2 n}(k)\right)_{E}=\sum_{r_{1}} \sum_{r=r_{1}}^{n} \sum_{h=r_{1}}^{n-r+r_{1}}\binom{r}{r_{1}}\binom{n-h-1}{r-r_{1}-1} f\left(h, k, r_{1}\right) \tag{38}
\end{equation*}
$$

Letting $k \rightarrow \infty$ in (38) we get

$$
\begin{equation*}
\left(C_{2 n}\right)_{E}=2.3^{n-1} \tag{39}
\end{equation*}
$$

verifying authors' result (20) See [2].
In the case of two absorbing barriers we can easily show that:
Theorem:
Let $C_{n, r, r_{1}}^{b(h)}\left(k_{1}, k_{2}\right):$ a $C_{n}\left(k_{1}, k_{2}\right)$-path with $b-B$ points, r A-points of which $r_{1} A^{+}$-points.

$$
\begin{align*}
\left(C_{2 n, r, r_{1}}^{2 b(2 h)}(+)\left(k_{1}, k_{2}\right)\right)_{E}= & \binom{r_{1}-1}{b}\binom{r-r_{1}-1}{b-1} f_{1}\left(h, k_{1}, r_{1}\right) \\
& \times\left(f_{2}\left(n, h, k_{2}, r, r_{1}\right)\right.
\end{aligned} \quad \begin{aligned}
&\left(C_{2 n, r, r_{1}}^{2 b(2 h)}(-)\left(k_{1}, k_{2}\right)\right)_{E}=\binom{r_{1}-1}{b-1}\binom{r-r_{1}-1}{b} f\left(h, k_{1}, r_{1}\right) \tag{40}\\
& \times\left(f_{2}\left(n, h, k_{2}, r, r_{1}\right)\right. \\
&\left(C_{2 n, r, r_{1}}^{2 b-1(2 h)}\left(k_{1}, k_{2}\right)\right)_{E}= 2\binom{r_{1}-1}{b-1}\binom{r-r_{1}-1}{b-1} f_{1}\left(h, k_{1}, r_{1}\right) \tag{41}\\
& \times f_{2}\left(n, h, k_{2}, r, r_{1}\right)
\end{align*}
$$

where

$$
\begin{align*}
& f_{1}\left(h, k_{1}, r_{1}\right)=\sum_{i=0}^{\min \left(\sigma_{1}, \frac{h-r_{1}}{k_{1}-1}\right)} \quad(-1)^{i}\binom{r_{1}}{i}\binom{h-1-\left(k_{1}-1\right) i}{r_{1}-1} \tag{43}\\
& f_{2}\left(n, h, k_{2}, r, r_{1}\right)=\sum_{j=0}^{\min \left(r_{1},\left[\frac{n-h-r+r_{1}}{\sum_{2}-1}(-1)\right.\right.}\binom{\left.r-r_{1}\right)}{j}\binom{n-h-1-\left(k_{2}-1\right) i}{r-r_{1}-1}(44)
\end{align*}
$$

It is easily seen that for $k_{2} \rightarrow \infty$; (40) to (42) lead to (3) to (5), respectively, of Theorem (1).

References

[1] Feller, W: An Introduction to Probability Theory and its application, Vol. 1 (3rd Ed.) John Wiley, N.Y.
[2] Sushma Sindwani and Kanwar Sen: "On Fluctuations In Coin Tossing and Random Walk", J. Korean Math. Soc. Vol. 13, No. 1, pp. 105-111.

